Differential trafficking of soluble and integral membrane secretory granule-associated proteins
نویسندگان
چکیده
The posttranslational processing enzyme peptidylglycine alpha-amidating monooxygenase (PAM) occurs naturally in integral membrane and soluble forms. With the goal of understanding the targeting of these proteins to secretory granules, we have compared the maturation, processing, secretion, and storage of PAM proteins in stably transfected AtT-20 cells. Integral membrane and soluble PAM proteins exit the ER and reach the Golgi apparatus with similar kinetics. Biosynthetic labeling experiments demonstrated that soluble PAM proteins were endoproteolytically processed to a greater extent than integral membrane PAM; this processing occurred in the regulated secretory pathway and was blocked by incubation of cells at 20 degrees C. 16 h after a biosynthetic pulse, a larger proportion of soluble PAM proteins remained cell-associated compared with integral membrane PAM, suggesting that soluble PAM proteins were more efficiently targeted to storage granules. The nonstimulated secretion of soluble PAM proteins peaked 1-2 h after a biosynthetic pulse, suggesting that release was from vesicles which bud from immature granules during the maturation process. In contrast, soluble PAM proteins derived through endoproteolytic cleavage of integral membrane PAM were secreted in highest amount during later times of chase. Furthermore, immunoprecipitation of cell surface-associated integral membrane PAM demonstrated that very little integral membrane PAM reached the cell surface during early times of chase. However, when a truncated PAM protein lacking the cytoplasmic tail was expressed in AtT-20 cells, > 50% of the truncated PAM-1 protein reached the cell surface within 3 h. We conclude that the trafficking of integral membrane and soluble secretory granule-associated enzymes differs, and that integral membrane PAM proteins are less efficiently retained in maturing secretory granules.
منابع مشابه
Trafficking of a secretory granule membrane protein is sensitive to copper.
We explored the effect of copper availability on the synthesis and trafficking of peptidylglycine alpha-amidating monooxygenase (PAM), an essential cuproenzyme whose catalytic domains function in the lumen of peptide-containing secretory granules. Corticotrope tumor cell lines expressing integral membrane and soluble forms of PAM were depleted of copper using bathocuproinedisulfonic acid or loa...
متن کاملProtein secretion: Puzzling receptors
All known sorting receptors for soluble cargo in the secretory pathway are transmembrane proteins. For sorting to the regulated pathway, however, a subpopulation of secretory proteins, associated with the membrane but not membrane-spanning, appears to link cargo and membrane in storage granule biogenesis.
متن کاملSorting during transport to the surface of PC12 cells: divergence of synaptic vesicle and secretory granule proteins
PC12 cells, a cell line derived from a rat pheochromocytoma, have both regulated and constitutive secretory pathways. Regulated secretion occurs via large dense core granules, which are related to chromaffin granules and are abundant in these cells. In addition, PC12 cells also contain small electron-lucent vesicles, whose numbers increase in response to nerve growth factor and which may be rel...
متن کاملOrganelle proteomics: identification of the exocytic machinery associated with the natural killer cell secretory lysosome.
Natural killer (NK) cells and cytotoxic T lymphocytes eliminate virally infected and transformed cells. Target cell killing is mediated by the regulated exocytosis of secretory lysosomes, which deliver perforin and proapoptotic granzymes to the infected or transformed cell. Yet despite the central role that secretory lysosome exocytosis plays in the immune response to viruses and tumors, little...
متن کاملCOOH-terminal signals mediate the trafficking of a peptide processing enzyme in endocrine cells
Peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the COOH-terminal amidation of bioactive peptides through a two step reaction catalyzed by separate enzymes contained within the PAM precursor. To characterize the trafficking of integral membrane PAM proteins in neuroendocrine cells, we have generated stable AtT-20 cell lines expressing full length and COOH-terminally truncated inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 124 شماره
صفحات -
تاریخ انتشار 1994